3.9.23 \(\int \frac {(c (d \sin (e+f x))^p)^n}{a+a \sin (e+f x)} \, dx\) [823]

Optimal. Leaf size=189 \[ \frac {\cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {n p}{2};\frac {1}{2} (2+n p);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{a f \sqrt {\cos ^2(e+f x)}}-\frac {n p \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1+n p);\frac {1}{2} (3+n p);\sin ^2(e+f x)\right ) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{a f (1+n p) \sqrt {\cos ^2(e+f x)}}-\frac {\cos (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (a+a \sin (e+f x))} \]

[Out]

-cos(f*x+e)*(c*(d*sin(f*x+e))^p)^n/f/(a+a*sin(f*x+e))+cos(f*x+e)*hypergeom([1/2, 1/2*n*p],[1/2*n*p+1],sin(f*x+
e)^2)*(c*(d*sin(f*x+e))^p)^n/a/f/(cos(f*x+e)^2)^(1/2)-n*p*cos(f*x+e)*hypergeom([1/2, 1/2*n*p+1/2],[1/2*n*p+3/2
],sin(f*x+e)^2)*sin(f*x+e)*(c*(d*sin(f*x+e))^p)^n/a/f/(n*p+1)/(cos(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2905, 2848, 2827, 2722} \begin {gather*} \frac {\cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {n p}{2};\frac {1}{2} (n p+2);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{a f \sqrt {\cos ^2(e+f x)}}-\frac {n p \sin (e+f x) \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (n p+1);\frac {1}{2} (n p+3);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{a f (n p+1) \sqrt {\cos ^2(e+f x)}}-\frac {\cos (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (a \sin (e+f x)+a)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*(d*Sin[e + f*x])^p)^n/(a + a*Sin[e + f*x]),x]

[Out]

(Cos[e + f*x]*Hypergeometric2F1[1/2, (n*p)/2, (2 + n*p)/2, Sin[e + f*x]^2]*(c*(d*Sin[e + f*x])^p)^n)/(a*f*Sqrt
[Cos[e + f*x]^2]) - (n*p*Cos[e + f*x]*Hypergeometric2F1[1/2, (1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2]*Sin[e +
 f*x]*(c*(d*Sin[e + f*x])^p)^n)/(a*f*(1 + n*p)*Sqrt[Cos[e + f*x]^2]) - (Cos[e + f*x]*(c*(d*Sin[e + f*x])^p)^n)
/(f*(a + a*Sin[e + f*x]))

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2848

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b
)*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(a*f*(a + b*Sin[e + f*x]))), x] + Dist[d*(n/(a*b)), Int[(c + d*Sin[e +
f*x])^(n - 1)*(a - b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2905

Int[((c_.)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
 :> Dist[c^IntPart[n]*((c*(d*Sin[e + f*x])^p)^FracPart[n]/(d*Sin[e + f*x])^(p*FracPart[n])), Int[(a + b*Sin[e
+ f*x])^m*(d*Sin[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\left (c (d \sin (e+f x))^p\right )^n}{a+a \sin (e+f x)} \, dx &=\left ((d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int \frac {(d \sin (e+f x))^{n p}}{a+a \sin (e+f x)} \, dx\\ &=-\frac {\cos (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (a+a \sin (e+f x))}+\frac {\left (d n p (d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{-1+n p} (a-a \sin (e+f x)) \, dx}{a^2}\\ &=-\frac {\cos (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (a+a \sin (e+f x))}-\frac {\left (n p (d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{n p} \, dx}{a}+\frac {\left (d n p (d \sin (e+f x))^{-n p} \left (c (d \sin (e+f x))^p\right )^n\right ) \int (d \sin (e+f x))^{-1+n p} \, dx}{a}\\ &=\frac {\cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {n p}{2};\frac {1}{2} (2+n p);\sin ^2(e+f x)\right ) \left (c (d \sin (e+f x))^p\right )^n}{a f \sqrt {\cos ^2(e+f x)}}-\frac {n p \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1+n p);\frac {1}{2} (3+n p);\sin ^2(e+f x)\right ) \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{a f (1+n p) \sqrt {\cos ^2(e+f x)}}-\frac {\cos (e+f x) \left (c (d \sin (e+f x))^p\right )^n}{f (a+a \sin (e+f x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.18, size = 157, normalized size = 0.83 \begin {gather*} \frac {\cos (e+f x) \sqrt {\cos ^2(e+f x)} \sin (e+f x) \left (c (d \sin (e+f x))^p\right )^n \left (-\left ((2+n p) \, _2F_1\left (\frac {3}{2},\frac {1}{2} (1+n p);\frac {1}{2} (3+n p);\sin ^2(e+f x)\right )\right )+(1+n p) \, _2F_1\left (\frac {3}{2},1+\frac {n p}{2};2+\frac {n p}{2};\sin ^2(e+f x)\right ) \sin (e+f x)\right )}{a f (1+n p) (2+n p) (-1+\sin (e+f x)) (1+\sin (e+f x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*(d*Sin[e + f*x])^p)^n/(a + a*Sin[e + f*x]),x]

[Out]

(Cos[e + f*x]*Sqrt[Cos[e + f*x]^2]*Sin[e + f*x]*(c*(d*Sin[e + f*x])^p)^n*(-((2 + n*p)*Hypergeometric2F1[3/2, (
1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2]) + (1 + n*p)*Hypergeometric2F1[3/2, 1 + (n*p)/2, 2 + (n*p)/2, Sin[e +
 f*x]^2]*Sin[e + f*x]))/(a*f*(1 + n*p)*(2 + n*p)*(-1 + Sin[e + f*x])*(1 + Sin[e + f*x]))

________________________________________________________________________________________

Maple [F]
time = 0.10, size = 0, normalized size = 0.00 \[\int \frac {\left (c \left (d \sin \left (f x +e \right )\right )^{p}\right )^{n}}{a +a \sin \left (f x +e \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(d*sin(f*x+e))^p)^n/(a+a*sin(f*x+e)),x)

[Out]

int((c*(d*sin(f*x+e))^p)^n/(a+a*sin(f*x+e)),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n/(a+a*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(((d*sin(f*x + e))^p*c)^n/(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n/(a+a*sin(f*x+e)),x, algorithm="fricas")

[Out]

integral(((d*sin(f*x + e))^p*c)^n/(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\left (c \left (d \sin {\left (e + f x \right )}\right )^{p}\right )^{n}}{\sin {\left (e + f x \right )} + 1}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))**p)**n/(a+a*sin(f*x+e)),x)

[Out]

Integral((c*(d*sin(e + f*x))**p)**n/(sin(e + f*x) + 1), x)/a

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sin(f*x+e))^p)^n/(a+a*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(((d*sin(f*x + e))^p*c)^n/(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,{\left (d\,\sin \left (e+f\,x\right )\right )}^p\right )}^n}{a+a\,\sin \left (e+f\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(d*sin(e + f*x))^p)^n/(a + a*sin(e + f*x)),x)

[Out]

int((c*(d*sin(e + f*x))^p)^n/(a + a*sin(e + f*x)), x)

________________________________________________________________________________________